

# "National Tidal Issues Peruvian Sea Level Network"







#### Second Lieutenant Enrique Varea

# Contents

- Genral Information
- 🔊 Tide Gauges
- 📨 We Used Tides For
- 🛸 Our Future
- Review of Action Items TWLWG3 and IHO Resolutions







# **General Information**

More than 3,000 km of coast.

Iregular y different topography.

Many tide amplituds along the coast

Important recurrent events, mainly ENZO.





#### Tide Gauge

Automatic Stations 2001

Automatic Stations 2010 The Future...



10 SUTRON sensor Send data hourly



10 Radar Sensors Send data in real time  Install a GVAR station to intregate an standar network for tide gauges and meteorogical information (this year)

• Extend our tide network with 17 new stations (2012- 2015)

Tsunami warning system

**National Network** 

# We used for

- Vertical Datums
- Correct chart soundings, Tide streams
- Lunar phases realtionships.
- Navigation, acuatic sports, port activities safety, also to alert in case of Tsunamis or important sea changes.
- Study harmonics to make anual predictions and information for numeric models (sediment transport, currents).





# We used for

- Make statiscts of anomaluos waves, this information is commercialized and used in our Hydrgraphic Service to make sea predictions.
- Cientific investigations like:
  - ENZO
  - Register to determine the Tsunami timeline.
  - Register sea perturbations and seiches,
  - Sea level variation related to earthquakes
  - Climate changes.







#### Our Future

Redundancy sensors in tide stations (pressure sensors and radar sensors)

• Work with 17 tide automatic stations

• Use DRGS.



## Review Action Items TWLWG3 and IHO Resolutions

#### 2 Datums and Bench Marks

The Datums are based in data collected in a lunar cicle (19 years)

Each six months we make bench mark nivelations in all our tide stations

#### Principal Datums:

- Mean Sea Level
- Mean low water springs is used in our Hydrographic Service for chart datums (all scales) and tide predictions
- River and estuaries datum does'nt have clear standards.







#### Review Action Items TWLWG3 and IHO Resolutions



Basic information wich should include: tide station name, code, country, timezone, source, date, datum, list of components, kind of sensor and responsable

#### 4 Prediction tide table



Our Digital Tide table is been made, (finished this year).

LA DE MAIFIEAS

|           | Simbolo        | (cm)    | rase (*) | SIIIDOIO                                                                 | (cm)    | Fase (*) |          |   |
|-----------|----------------|---------|----------|--------------------------------------------------------------------------|---------|----------|----------|---|
|           | Semidiurnas    |         |          | BET <sub>1</sub>                                                         | 0.1802  | 232.78   |          |   |
| 11 0010 1 | M <sub>2</sub> | 23.5878 | 213.91   | CHI <sub>1</sub>                                                         | 0.1388  | 58.53    | $\cap 1$ | 1 |
|           | S <sub>2</sub> | 8.0014  | 184.05   | UPS <sub>1</sub>                                                         | 0.1261  | 304.77   |          |   |
|           | N <sub>2</sub> | 6.4016  | 166.90   | 2Q <sub>1</sub>                                                          | 0.1272  | 202.64   |          |   |
|           | K <sub>2</sub> | 2.5371  | 326.60   | PSI <sub>1</sub>                                                         | 0.1212  | 37.78    |          |   |
|           | Mu2            | 1.3142  | 232.3    | ALP <sub>1</sub>                                                         | 0.0906  | 205.70   |          |   |
|           | Nu2            | 1.1720  | 254.37   | De periodo                                                               |         |          |          |   |
|           | 2N2            | 0.8752  | 111.00   | Sa                                                                       | 11.5554 | 243.04   |          |   |
|           | L2             | 0.7509  | 17.23    | Ssa                                                                      | 3.9331  | 115.94   |          |   |
|           | EPS2           | 0.4848  | 167.34   | Mf                                                                       | 1.5148  | 122.49   |          |   |
|           | H2             | 0.3832  | 318.56   | Mm                                                                       | 1.2273  | 113.35   |          |   |
|           | T2             | 0.3740  | 349.09   | MS <sub>f</sub>                                                          | 1.1744  | 144.22   |          |   |
|           | LDA2           | 0.2595  | 329.73   | MSm                                                                      | 0.9571  | 66.45    |          |   |
|           | ETA2           | 0.2406  | 11.43    | Componentes armónicos de mareas<br>en aguas superficiales (efecto local) |         |          |          |   |
|           | MSN2           | 0.2014  | 34.58    | Ma                                                                       | 0.6187  | 258.02   |          |   |
|           | MKS2           | 0.1547  | 110.98   | S₄                                                                       | 0.2812  | 118.58   |          |   |
|           | OQ2            | 0.1541  | 95.78    | SK3                                                                      | 0.2599  | 285.69   |          |   |
|           | R2             | 0.0625  | 309.94   | 2MS6                                                                     | 0.2492  | 179.10   |          |   |
|           | Diurnas        |         |          | 2MK6                                                                     | 0.1749  | 337.21   |          |   |
|           | K1             | 15.0296 | 114.50   | SO3                                                                      | 0.1488  | 151.68   |          |   |
|           | 01             | 7.1453  | 161.40   | MK4                                                                      | 0.1376  | 329.81   |          |   |
|           | P1             | 4.4837  | 140.13   | M6                                                                       | 0.1271  | 179.53   |          |   |
|           | Q1             | 1.0874  | 110.16   | MO3                                                                      | 0.1301  | 131.85   |          |   |
|           | 11             | 0 0750  | 159.63   | MK3                                                                      | 0 1202  | 38 / 2   |          |   |

0.9143

70.43

NO1

The "digital tide table" for Peruvian ports is an anual publication since 1946, actually we have predictions for 22 ports in Peru.

DIRECCIÓN DE HIDROGRAFÍA Y NAVEGACIÓN

2MK5 0.1040

264.76

## Review Action Items TWLWG3 and IHO Resolutions

#### 5 Tide data exchange

- We are the only institution in Peru witch collects tide data.
- We share data and other information with another WG (GLOSS, PSMSL, JASL-UHSLC) and countries
- We are interested in share and recieve tide information use all channels (mail, internet, ftp)

#### 6 World tide observation network

- Tide data should be one of the most reliable source in the world, the storage to conserve it would be used in many cases, like navigation and science.
- Is very important to make efforts for extend the tide data all over the world
- We recongnize and value the instalation of three Tide stations in peru by the University of Hawaii.

## Review of Action Items TWLWG3 and IHO Resolutions

#### 7 Global Sea Level Rise

- The sea level rise produces many negative consecuences like floods, coast variation, lost buildings, ecologic damages and more.
- It's neccesary to obtain data from long periods (40-60 years) witch could be able to determinate the sea level rise in a timeline
- Long periods tide data provides more reliable global numeric models related with climates, to make better predictions and take decitions to mitigate them.
- We determine, based in data about 69 years ago, a sea level rise, faster at ENZO event. Now we saw a rise of 10 cm in these 69 years.
- However, we recommend to use GPS to see differences between vertical movements and sea level changes.





## Review of Action Items TWLWG3 and IHO Resolutions

#### 7 Global Sea Level Rise





## Review of Action Items TWLWG3 and IHO Resolutions

#### 8 Tsunami Alerts

- To imporve our Tsiunami warning center, we've installed 10 tide stations with radar sensors witch transmit data in live. they also have a camera to see changes in waves. Moreover we are planning to install 6 more this year.
- Related to tide network, we make a solicitude from NOAA to opbtain High Frecuency Channels, to trnsmit regional data in live via GOES.







# Conclusions

- It's prioritary to have long period tide data mainly for climate change investigations.
- Tide stations must have two sensors workin in parallel to compare data, witch makes more reliable the Infomation about Tsunamis.
- New Technology in tide gauges makes benefits in time and money. Also gives more precition in data.
- It's very important to consider courses or seminaries about tides, in our case we need knowledges related with tidal streams.
- We reccomend to consider more standards about vertical datums for rivers and estuaries



# Thanks!



